Technology with attitude

Implantable BCI Research Funded by $1 million

A research at University of Washington to restore brain function lost to disease or injury was recently funded by a $1 million, three-year grant from the W.M. Keck Foundation. If successful, the tiny, implantable computer called neurochip, would bridge impaired nerve connections and promote brain recovery from injury or disease.

The University of Washington has made significant progress in neural engineering, communication and control between biological and machine systems. The Keck project is the next step in advancing the technology of miniature devices developed at the UW to record from and stimulate the brain, spinal cord and muscles.

The principal investigator on the Keck Foundation grant is Dr. Eberhard E. Fetz, UW professor of physiology and biophysics and a core staff researcher at the Washington National Primate Research Center. He and his colleagues have successfully deployed tiny, battery-powered implantable brain-computer interfaces called neurochips in animals.

The neurochip can record nerve cell activity in one part of the brain, process this activity and then stimulate cells in another brain region. The battery-powered device operates continuously during free behavior. When primates carry out their usual daily activities – socializing, climbing, eating, and exploring – their brains can learn to exploit these new resources under normal behavioral conditions.

“Using an implantable computer interface to implement novel interactions between brain sites opens many fundamentally new research directions,” Fetz said, “depending on the site of recording and stimulation, and how these signals are processed and transformed.”

He explained that a second application is to promote neural plasticity, which could strengthen connections and allow some of the brain’s functions to be rescued when impaired. This happens naturally when people recover the ability to move or speak again after a stroke or brain injury. The bidirectional brain computer interface could facilitate this recovery and exploit the brain’s innate talent for re-organizing itself as it heals.

Many labs around the world are working on brain-computer interfaces that convert neural activity to control of external devices such as prosthetic limbs or computer cursors. What makes the recently funded project unusual is that its scientists are developing a recurrent implantable device that would interact bidirectionally with the brain. By operating autonomously and continuously, without the need for connection to external instrumentation, it would facilitate long-term behavioral adaptation and plasticity.

“We are extremely grateful to the Keck Foundation for supporting this highly ambitious endeavor,” Fetz said. “Looking ahead, we can anticipate that future innovations in nanotechnology, computers and brain science will advance this effort beyond the current state of the art. The grant allows us to be poised to incorporate these advances into the development of more powerful recurrent brain computer interfaces. We expect that these devices will have numerous applications in basic neuroscience research and as well as in clinical care.”

Press release source: www.eurekalert.org

Comments are closed, but trackbacks and pingbacks are open.